Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sum_{n=1}^k \tan ^{-1}\left(\frac{1}{n^2+3 n+3}\right)=\tan ^{-1} \alpha$, then $\alpha=$
MathematicsInverse Trigonometric FunctionsJEE Main
Options:
  • A $\frac{k}{k+2}$
  • B $\frac{2 k}{2 k+1}$
  • C $\frac{k}{2 k+5}$
  • D $\frac{3 k}{4 k+5}$
Solution:
1913 Upvotes Verified Answer
The correct answer is: $\frac{k}{2 k+5}$
We have,
$\begin{aligned}
\sum_{n=1}^k \tan ^{-1}\left(\frac{1}{n^2+3 n+3}\right) =\tan ^{-1} \alpha \\
\sum_{n=1}^k \tan ^{-1}\left(\frac{(n+2)-(n+1)}{1+(n+2)(n+1)}\right) =\tan ^{-1} \alpha \\
\Rightarrow \quad \sum_{n=1}^k\left(\tan ^{-1}(n+2)-\tan ^{-1}(n+1)\right) =\tan ^{-1} \alpha \\
\Rightarrow \quad\left(\tan ^{-1} 3-\tan ^{-1} 2\right)+\left(\tan ^{-1} 4-\tan ^{-1} 2\right) \ldots & \tan ^{-1}(k+2)-\tan ^{-1}(k+1) \\
\tan ^{-1}(k+2)-\tan ^{-1} 2 =\tan ^{-1} \alpha \\
\tan ^{-1}\left(\frac{k+2-2}{1+(k+2)(2)}\right) =\tan ^{-1} \alpha \\
\frac{k}{1+2 k+4}=\alpha \Rightarrow \alpha =\frac{k}{2 k+5}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.