Search any question & find its solution
Question:
Answered & Verified by Expert
If $n$ is an integer which leaves remainder one when divided by three, then $(1+\sqrt{3} i)^n+(1-\sqrt{3} i)^n$ equals
Options:
Solution:
2330 Upvotes
Verified Answer
The correct answer is:
$-(-2)^n$
$\begin{aligned} & \text { Now, }(1+\sqrt{3} i)^n+(1-\sqrt{3} i)^n \\ &= {\left[2\left(\frac{1+\sqrt{3} i}{2}\right)\right]^n+\left[2\left(\frac{1-\sqrt{3} i}{2}\right)\right]^n } \\ &=\left(-2 \omega^2\right)^n+(-2 \omega)^n \\ &=(-2)^n\left[\left(\omega^2\right)^{3 r+1}+(\omega)^{3 r+1}\right] \\ & {[\because n=3 r+1, \text { where } r \text { is an integer }] } \\ &=(-2)^n\left(\omega^2+\omega\right)=-(-2)^n\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.