Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{P}(\mathrm{X}=\mathrm{x})=c\left(\frac{2}{3}\right)^x ; \mathrm{x}=1,2,3,4, \ldots$ is a probability distribution function of a random variable $\mathrm{X}$, then the value of $c$ is
MathematicsProbabilityTS EAMCETTS EAMCET 2023 (12 May Shift 1)
Options:
  • A $\frac {1}{4}$
  • B $\frac {1}{3}$
  • C $\frac {1}{2}$
  • D $\frac {1}{6}$
Solution:
2221 Upvotes Verified Answer
The correct answer is: $\frac {1}{2}$
$P(X=x)=c\left(\frac{2}{3}\right)^x$
$\begin{aligned} & \Sigma P=1 \\ & \therefore \quad c\left(\frac{2}{3}\right)+c\left(\frac{2}{3}\right)^2+c\left(\frac{2}{3}\right)^3+\ldots . .=1 \\ & \Rightarrow c\left[\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+\ldots \ldots\right]=1 \\ & \Rightarrow c\left[\frac{\frac{2}{3}}{1-\frac{2}{3}}\right]=1 \Rightarrow 2 c=1 \\ & \therefore \quad c=\frac{1}{2} .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.