Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{S}_{\mathrm{n}}=\mathrm{nP}+\frac{\mathrm{n}(\mathrm{n}-1) \mathrm{Q}}{2}$, where $\mathrm{S}_{\mathrm{n}}$ denotes the sum of the
first $\mathrm{n}$ terms of an AP, then the common difference is $[2017-I I]$
MathematicsSequences and SeriesNDANDA 2017 (Phase 2)
Options:
  • A $\mathrm{P}+\mathrm{Q}$
  • B $2 \mathrm{P}+3 \mathrm{Q}$
  • C $2 Q$
  • D $Q$
Solution:
1651 Upvotes Verified Answer
The correct answer is: $Q$
$\mathrm{S}_{\mathrm{n}}=\mathrm{np}+\frac{\mathrm{n}(\mathrm{n}-1) \mathrm{Q}}{2}$
We know, $\mathrm{T}_{1}=\mathrm{S}_{1}$ and $\mathrm{T}_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}$
Common difference $(\mathrm{d})=\mathrm{T}_{2}-\mathrm{T}_{1}$
$\therefore \mathrm{S}_{1}=(1) \mathrm{P}+\frac{1(1-1) \mathrm{Q}}{2}=\mathrm{P}+0=\mathrm{P}$
$\mathrm{S}_{2}=(2) \mathrm{P}+\frac{2(2-1) \mathrm{Q}}{2}=2 \mathrm{P}+\frac{2 \mathrm{Q}}{2}=2 \mathrm{P}+\mathrm{Q}$
$\therefore \mathrm{T}_{1}=\mathrm{P} ; \mathrm{T}_{2}=2 \mathrm{P}+\mathrm{Q}-\mathrm{P}=\mathrm{P}+\mathrm{Q}$
$\therefore$ Common difference $(\mathrm{d})=\mathrm{T}_{2}-\mathrm{T}_{1}$
$=\mathrm{P}+\mathrm{Q}-\mathrm{P}=\mathrm{Q}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.