Search any question & find its solution
Question:
Answered & Verified by Expert
If $\sin ^{-1} x+\cos ^{-1} y=\frac{3 \pi}{10}$, then the value of $\cos ^{-1} x+\sin ^{-1} y$ is
Options:
Solution:
1223 Upvotes
Verified Answer
The correct answer is:
$\frac{7\pi}{10}$
$\begin{array}{ll} & \sin ^{-1} x+\cos ^{-1} y=\frac{3 \pi}{10} \\ \therefore \quad & \frac{\pi}{2}-\cos ^{-1} x+\frac{\pi}{2}-\sin ^{-1} y=\frac{3 \pi}{10} \\ \therefore \quad & \pi-\cos ^{-1} x-\sin ^{-1} y=\frac{3 \pi}{10} \\ \therefore \quad & \cos ^{-1} x+\sin ^{-1} y=\pi-\frac{3 \pi}{10}=\frac{7 \pi}{10}\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.