Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sin ^{-1} x+\cot ^{-1}(1 / 2)=\pi / 2$, then what is the value of $x$ ?
MathematicsInverse Trigonometric FunctionsNDANDA 2009 (Phase 2)
Options:
  • A 0
  • B $1 / \sqrt{5}$
  • C $2 / \sqrt{5}$
  • D $\sqrt{3} / 2$
Solution:
2589 Upvotes Verified Answer
The correct answer is: $1 / \sqrt{5}$
Let $\sin ^{-1} x+\cot ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{2}$
As we know $\cot ^{-1} x=\sin ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)$
$\therefore \sin ^{-1} x+\cot ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{2}$
$\Rightarrow \sin ^{-1} x+\sin ^{-1}\left(\frac{1}{\sqrt{1+\frac{1}{4}}}\right)=\frac{\pi}{2}$
$\Rightarrow \sin ^{-1} x+\sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)=\frac{\pi}{2}$
Now, $\sin ^{-1} x=\cos ^{-1} \sqrt{1-x^{2}}$
$\therefore \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)=\cos ^{-1} \sqrt{1-\frac{4}{5}}=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)$
From equation (1), we have
$\sin ^{-1} x+\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)=\frac{\pi}{2}$
since, $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
$x=\frac{1}{\sqrt{5}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.