Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$, then $\cos ^{-1} x+\cos ^{-1} y$ is equal to
MathematicsTrigonometric EquationsVITEEEVITEEE 2007
Options:
  • A $\frac{\pi}{2}$
  • B $\frac{\pi}{4}$
  • C $\pi$
  • D $\frac{3 \pi}{4}$
Solution:
1271 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{2}$
Given $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$
we know that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
$\begin{array}{l}
\Rightarrow \sin ^{-1} x=\pi / 2-\cos ^{-1} x \\
\therefore \text { Equation (1) becomes. }
\end{array}$
$\frac{\pi}{2}-\cos ^{-1} x+\frac{\pi}{2}-\cos ^{-1} y=\frac{\pi}{2}$
$\Rightarrow \cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.