Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\tan ^{-1}\left(\frac{1-x}{1+x}\right)-\frac{1}{2} \tan ^{-1} x=0$, for $x>0$, then $x=$
MathematicsInverse Trigonometric FunctionsMHT CETMHT CET 2020 (13 Oct Shift 1)
Options:
  • A $\sqrt{3}$
  • B $\frac{1}{\sqrt{2}}$
  • C $\frac{1}{\sqrt{3}}$
  • D $\frac{1}{3}$
Solution:
1460 Upvotes Verified Answer
The correct answer is: $\frac{1}{\sqrt{3}}$
Here $\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x \Rightarrow \tan ^{-1}\left[\frac{1-x}{1+(1)(x)}\right]=\frac{1}{2} \tan ^{-1} x$
$\therefore \tan ^{-1}(1)-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x$
$\frac{\pi}{4}=\frac{3}{2} \tan ^{-1} x \Rightarrow \tan ^{-1} x=\frac{\pi}{4} \times \frac{2}{3} \Rightarrow \tan ^{-1} x=\frac{\pi}{6}$
$\therefore x=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.