Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the angle between the circles $x^2+y^2-2 x-4 y+c=0$ and $x^2+y^2-4 x-2 y+4=0$ is $60^{\circ}$, then $c$ is equal to
MathematicsCircleAP EAMCETAP EAMCET 2016
Options:
  • A $\frac{3 \pm \sqrt{5}}{2}$
  • B $\frac{6 \pm \sqrt{5}}{2}$
  • C $\frac{9 \pm \sqrt{5}}{2}$
  • D $\frac{7 \pm \sqrt{5}}{2}$
Solution:
2954 Upvotes Verified Answer
The correct answer is: $\frac{7 \pm \sqrt{5}}{2}$
We have,
$\begin{aligned}
& \mathrm{C}_1: x^2+y^2-2 x-4 y+c=0 ... (i)\\
& \mathrm{C}_2: x^2+y^2-4 x-2 y+4=0... (ii)
\end{aligned}$
So, centre of circle $\mathrm{C}_1=(1,2), r_1=\sqrt{5-c}$ and centre of circle $\mathrm{C}_2=(2,1), r_2=1$
Now, angle between the two circles,
$\begin{aligned}
\cos \theta & =\frac{\left(\mathrm{C}_1 \mathrm{C}_2\right)^2-\left(r_1^2+r_2^2\right)}{2 r_1 r_2} \\
\cos \theta & =\frac{\left[(2-1)^2+(1-2)^2\right]-(5-c+1)}{2 \sqrt{5}-c(1)}
\end{aligned}$
Given, $\theta=60^{\circ}$
$\begin{aligned}
& \cos 60^{\circ}=\frac{1+1-5+c-1}{2 \sqrt{5-c}} \\
& \frac{1}{2}=\frac{c-4}{2 \sqrt{5-c}} \\
& \sqrt{5-c}=c-4
\end{aligned}$
On squaring both sides, we get
$\begin{aligned}
& 5-c=c^2-8 c+16 \\
& c^2-5 c+11=0 \\
& c=\frac{7 \pm \sqrt{49-44}}{2} \\
& c=\frac{7 \pm \sqrt{5}}{2}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.