Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the angles of a triangle are in the ratio $3: 4: 5$, then the sides are in the ratio
MathematicsProperties of TrianglesCOMEDKCOMEDK 2016
Options:
  • A $3: 4: 5$
  • B $2: \sqrt{3}: \sqrt{3}+1$
  • C $\sqrt{2}: \sqrt{6}: \sqrt{3}+1$
  • D $2: \sqrt{6}: \sqrt{3}+1$
Solution:
1577 Upvotes Verified Answer
The correct answer is: $2: \sqrt{6}: \sqrt{3}+1$
Let the angles of triangle are $3 \theta, 4 \theta, 5 \theta$. As we know that,
$\angle A+\angle B+\angle C=180^{\circ}$
$\begin{array}{ll}\Rightarrow & 3 \theta+4 \theta+5 \theta=180^{\circ} \\ \Rightarrow & 12 \theta=180^{\circ} \Rightarrow \theta=15^{\circ}\end{array}$
So, angle are $45^{\circ}, 60^{\circ}, 75^{\circ}$.
Now, $\sin A=\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
$\sin B=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\sin C=\sin 75^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
So, $\quad a: b: c=\sin A: \sin B: \sin C$
$\begin{aligned}
&=\frac{1}{\sqrt{2}}: \frac{\sqrt{3}}{2}: \frac{\sqrt{3}+1}{2 \sqrt{2}} \\
&=2: \sqrt{6}: \sqrt{3}+1
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.