Search any question & find its solution
Question:
Answered & Verified by Expert
If the function defined by $f(x)=\left\{\begin{array}{cl}\frac{2^x-2^{-x}}{x}, & x \neq 0 \text { is continuous at } \\ k, & x=0\end{array}\right.$ $x=0$, then $e^k$ is equal to
Options:
Solution:
2682 Upvotes
Verified Answer
The correct answer is:
4
Given, $f(x)=\left\{\begin{array}{cc}\frac{2^x-2^{-x}}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$
Given, $f(x)$ is continuous at $x=0$.
Hence, $\lim _{x \rightarrow 0} f(x)=k$
$$
\Rightarrow k=\lim _{x \rightarrow 0} \frac{2^x-2^{-x}}{x}=\lim _{x \rightarrow 0} \frac{2^x \log 2+2^{-x} \log 2}{1}
$$
(using L-Hospital rule)
$$
\begin{aligned}
& =\log 2\left(2^{\circ}+2^{\circ}\right)=2 \log 2=\log 4 \\
\therefore e^k & =e^{\log 4}=4
\end{aligned}
$$
Given, $f(x)$ is continuous at $x=0$.
Hence, $\lim _{x \rightarrow 0} f(x)=k$
$$
\Rightarrow k=\lim _{x \rightarrow 0} \frac{2^x-2^{-x}}{x}=\lim _{x \rightarrow 0} \frac{2^x \log 2+2^{-x} \log 2}{1}
$$
(using L-Hospital rule)
$$
\begin{aligned}
& =\log 2\left(2^{\circ}+2^{\circ}\right)=2 \log 2=\log 4 \\
\therefore e^k & =e^{\log 4}=4
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.