Search any question & find its solution
Question:
Answered & Verified by Expert
If the line $2 x+5 y=12$ intersects the ellipse $4 x^2+5 y^2=20$ in two distinct points $A$ and $B$, then mid-point of $A B$ is
Options:
Solution:
2840 Upvotes
Verified Answer
The correct answer is:
None of these
Since, the line $2 x+5 y=12$ intersect the ellipse
$4 x^2+5 y^2=20$
$\begin{array}{ll}\therefore & 4\left(\frac{12-5 y}{2}\right)^2+5 y^2=20 \\ \Rightarrow & 144+25 y^2-120 y+5 y^2=20 \\ \Rightarrow & 30 y^2-120 y+124=0 \\ \Rightarrow & 15 y^2-60 y+62=0 \\ \therefore & y=\frac{60 \pm \sqrt{(60)^2-4 \times 15 \times 62}}{2(15)} \\ & =\frac{60 \pm \sqrt{3600-3720}}{30}=\frac{60 \pm \sqrt{-120}}{30}\end{array}$
Hence, no real value of $y$ exist.
Hence, no intersection is possible.
$4 x^2+5 y^2=20$
$\begin{array}{ll}\therefore & 4\left(\frac{12-5 y}{2}\right)^2+5 y^2=20 \\ \Rightarrow & 144+25 y^2-120 y+5 y^2=20 \\ \Rightarrow & 30 y^2-120 y+124=0 \\ \Rightarrow & 15 y^2-60 y+62=0 \\ \therefore & y=\frac{60 \pm \sqrt{(60)^2-4 \times 15 \times 62}}{2(15)} \\ & =\frac{60 \pm \sqrt{3600-3720}}{30}=\frac{60 \pm \sqrt{-120}}{30}\end{array}$
Hence, no real value of $y$ exist.
Hence, no intersection is possible.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.