Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the line l1:3y-2x=3 is the angular bisector of the lines l2:x-y+1=0 and l3:αx+βy+17=0, then α2+β2-α-β is equal to ............
MathematicsStraight LinesJEE MainJEE Main 2023 (11 Apr Shift 2)
Solution:
2685 Upvotes Verified Answer
The correct answer is: 348

Given,

L1:3y-2x=3 is angular bisector of L2:x-y+1=0 and L3:αx+βy+17=0

Now finding point of intersection of L1 & L2 we get, 0, 1

And point will lie on L3, so α×0+β×1+17=0

β=-17
Any point, say -32,0 on L1 should be equidistant from lines L2 & L3

Now using the formula of distance of a point from the line we get,
-32-0+112+12=-3α2+0+17α2+(-17)2

α-7 α-17=0

Now, for α=17, L2 & L3 coincides

So, α=7

Now putting the value of α & β in given expression we get,

α2+β2-α-β=-172+72-7+17=348 

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.