Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the magnitudes of two vectors a and $\mathrm{b}$ are equal then which one of the following is correct?
MathematicsVector AlgebraNDANDA 2012 (Phase 1)
Options:
  • A $(\vec{a}+\vec{b})$ is parallel to $(\vec{a}-\vec{b})$
  • B $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=1$
  • C $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$
  • D None of the above
Solution:
1318 Upvotes Verified Answer
The correct answer is: $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$
Given $|\overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{b}}|$
Consider $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})$
$=\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}-\vec{b} \cdot \vec{b}$
$=|\overrightarrow{\mathrm{a}}|^{2}-|\overrightarrow{\mathrm{b}}|^{2}=|\overrightarrow{\mathrm{a}}|^{2}-|\overrightarrow{\mathrm{a}}|^{2}=0$
Hence $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.