Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the radius of a circular blot of oil is increasing at the rate of $2 \mathrm{~cm} / \mathrm{min}$, then the rate
of change of its area when its radius is $3 \mathrm{cms}$ is
MathematicsDifferential EquationsMHT CETMHT CET 2020 (19 Oct Shift 1)
Options:
  • A $10 \pi \mathrm{cm}^{2} / \mathrm{min}$
  • B $12 \pi \mathrm{cm}^{2} / \mathrm{min}$
  • C $14 \pi \mathrm{cm}^{2} / \mathrm{min}$
  • D $16 \pi \mathrm{cm}^{2} / \mathrm{min}$
Solution:
1147 Upvotes Verified Answer
The correct answer is: $12 \pi \mathrm{cm}^{2} / \mathrm{min}$
(A)
Given $\frac{\mathrm{dr}}{\mathrm{dt}}=2 \mathrm{~cm} / \mathrm{min}$ and $\mathrm{r}=3 \mathrm{cms}$
Area $=\pi r^{2}$
Differentiating w.r.t. $t$
$\frac{\mathrm{d} \mathrm{A}}{\mathrm{dt}}=\pi \cdot 2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}=\pi \times 2(3) \times(2)=12 \pi \mathrm{cm}^{2} / \mathrm{min}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.