Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the roots of the equations $x^{2}-(a-1) x+(a+b)=0$ and $a x^{2}-2 x+b=0$ are identical, then what are the values of a and $\mathrm{b}$ ?
MathematicsQuadratic EquationNDANDA 2007 (Phase 1)
Options:
  • A $a=2, b=4$
  • B $a=2, b=-4$
  • C $\mathrm{a}=1, \mathrm{~b}=\frac{1}{2}$
  • D $\mathrm{a}=-1, \mathrm{~b}=-\frac{1}{2}$
Solution:
1781 Upvotes Verified Answer
The correct answer is: $a=2, b=-4$
Let $\alpha$ and $\beta$ be the roots of both the equations $x^{2}-(a-1) x+(a+b)=0$
$\Rightarrow \alpha+\beta=(a-1)$ and $\alpha \beta=(a+b)$
and $a x^{2}-2 x+b=0$
$\Rightarrow \alpha+\beta=\frac{2}{a}$ and $\alpha \beta=\frac{b}{a}$
Equating the sums of roots
$a^{2}-a-2=0 \Rightarrow a=-1,2$
Equating the products of roots and
and if $a=2, b=$ $1=$
From the given option, $=-4$ matches.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.