Search any question & find its solution
Question:
Answered & Verified by Expert
If the volume of a sphere increases at the rate of $2 \pi \mathrm{cm}^3 / \mathrm{s}$, then the rate of increase of its radius (in $\mathrm{cm} / \mathrm{s}$ ), when the volume is $288 \pi \mathrm{cm}^3$, is
Options:
Solution:
2855 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{72}$
Given
$\frac{d V}{d t}=2 \pi \mathrm{cm}^3 / \mathrm{s}$
$\because$ Volume of sphere, $V=\frac{4}{3} \pi r^3$
On differentiating w.r.t. $t$, we get
$\begin{aligned} & \frac{d V}{d t}=\frac{4}{3} \pi \times 3 r^2 \frac{d r}{d t} \\ & \Rightarrow \quad 2 \pi=4 \pi r^2 \frac{d r}{d t} \\ & \Rightarrow \quad \frac{d r}{d t}=\frac{1}{2 r^2}=\frac{1}{2 \times 6^2}=\frac{1}{72} \mathrm{~cm} / \mathrm{s} \\ & \end{aligned}$
$\left[\because V=288 \pi=\frac{4}{3} \pi r^3 \Rightarrow 216=r^3 \Rightarrow r=6\right]$
$\frac{d V}{d t}=2 \pi \mathrm{cm}^3 / \mathrm{s}$
$\because$ Volume of sphere, $V=\frac{4}{3} \pi r^3$
On differentiating w.r.t. $t$, we get
$\begin{aligned} & \frac{d V}{d t}=\frac{4}{3} \pi \times 3 r^2 \frac{d r}{d t} \\ & \Rightarrow \quad 2 \pi=4 \pi r^2 \frac{d r}{d t} \\ & \Rightarrow \quad \frac{d r}{d t}=\frac{1}{2 r^2}=\frac{1}{2 \times 6^2}=\frac{1}{72} \mathrm{~cm} / \mathrm{s} \\ & \end{aligned}$
$\left[\because V=288 \pi=\frac{4}{3} \pi r^3 \Rightarrow 216=r^3 \Rightarrow r=6\right]$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.