Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(\theta \in\left(0, \frac{\pi}{2}\right)\), then
\(\left|\begin{array}{ccc}
(\sin \theta+\operatorname{cosec} \theta)^2 & (\sin \theta-\operatorname{cosec} \theta)^2 & 2020 \\
(\cos \theta+\sec \theta)^2 & (\cos \theta-\sec \theta)^2 & 2020 \\
(\tan \theta+\cot \theta)^2 & (\tan \theta-\cot \theta)^2 & 2020
\end{array}\right|=\)
MathematicsDeterminantsAP EAMCETAP EAMCET 2020 (21 Sep Shift 1)
Options:
  • A 1
  • B -1
  • C 0
  • D 2020
Solution:
1278 Upvotes Verified Answer
The correct answer is: 0
Given determinate, where \(\theta \in\left(0, \frac{\pi}{2}\right)\) is
\(\Delta=\left|\begin{array}{ccc}
(\sin \theta+\operatorname{cosec} \theta)^2 & (\sin \theta-\operatorname{cosec} \theta)^2 & 2020 \\
(\cos \theta+\sec \theta)^2 & (\cos \theta-\sec \theta)^2 & 2020 \\
(\tan \theta+\cot \theta)^2 & (\tan \theta-\cot \theta)^2 & 2020
\end{array}\right|\)
On applying \(C_1 \rightarrow C_1-C_2\), we get
\(\Delta=\left|\begin{array}{ccc}
4 & (\sin \theta-\operatorname{cosec} \theta)^2 & 2020 \\
4 & (\cos \theta-\sec \theta)^2 & 2020 \\
4 & (\tan \theta-\cot \theta)^2 & 2020
\end{array}\right|\)
\(\because\) Elements of columns \(C_1\) and \(C_2\) are perportional, so \(\Delta=0\)
Hence, option (c) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.