Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $|x| < 1$ and $y=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots$, then $x$ is equal to :
MathematicsBinomial TheoremTS EAMCETTS EAMCET 2006
Options:
  • A $y+\frac{y^2}{2}+\frac{y^3}{3}+\ldots$
  • B $y-\frac{y^2}{2}+\frac{y^3}{3}-\frac{y^4}{4}+\ldots$
  • C $y+\frac{y^2}{2 !}+\frac{y^3}{3 !}+\ldots$
  • D $y-\frac{y^2}{2 !}+\frac{y^3}{3 !}-\frac{y^4}{4 !}+\ldots$
Solution:
2578 Upvotes Verified Answer
The correct answer is: $y+\frac{y^2}{2 !}+\frac{y^3}{3 !}+\ldots$
$y=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots$
$\Rightarrow \quad y=\log (1+x)$
$\Rightarrow \quad 1+x=e^y$
$\Rightarrow \quad 1+x=1+y+\frac{y^2}{2 !}+\ldots$
$\Rightarrow \quad x=y+\frac{y^2}{2 !}+\frac{y^3}{3 !}+\ldots$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.