Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$ then prove that
$\left(x^2+y^2\right)^2=\frac{a^2+b^2}{c^2+d^2}$
MathematicsComplex Numbers and Quadratic Equations
Solution:
2677 Upvotes Verified Answer
We have, $\quad x-i y=\sqrt{\frac{a-i b}{c-i d}} \ldots$ (i)
Replacing $i$ by $-i$ both side, we have
$x+i y=\sqrt{\frac{a+i b}{c+i d}} \quad \ldots \text { (ii) }$
Multiply eqns. (i) and (ii)
$\begin{aligned}
&(x-i y)(x+i y)=\sqrt{\frac{a-i b}{c-i d}} \times \sqrt{\frac{a+i b}{c+i d}} \\
&x^2-i^2 y^2=\sqrt{\frac{a^2-i^2 b^2}{c^2-i^2 d^2}} \\
&\Rightarrow x^2+y^2=\sqrt{\frac{a^2+b^2}{c^2+d^2}}
\end{aligned}$
$\Rightarrow\left(x^2+y^2\right)^2=\left(\sqrt{\frac{a^2+b^2}{c^2+d^2}}\right)^2$
(squaring on both side)
$\therefore\left(x^2+y^2\right)^2=\frac{a^2+b^2}{c^2+d^2}, \quad$ Hence proved

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.