Search any question & find its solution
Question:
Answered & Verified by Expert
If $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ and
$x \sin \theta=y \cos \theta,$ then $x^{2}+y^{2}=$
Options:
$x \sin \theta=y \cos \theta,$ then $x^{2}+y^{2}=$
Solution:
1970 Upvotes
Verified Answer
The correct answer is:
1
$x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
and $x \sin \theta=y \cos \theta$
Equation (i) may be written as $x \sin \theta \cdot \sin ^{2} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
$\Rightarrow y \cos \theta \sin ^{2} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
$\Rightarrow y \cos \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\sin \theta \cos \theta$
$\Rightarrow y \cos \theta=\sin \theta \cos \theta \therefore y=\sin \theta \quad \ldots$
Putting the value of y from
(iii) in (ii), we get $\mathrm{x} \sin \theta=\sin \theta \cdot \cos \theta \Rightarrow \mathrm{x}=\cos \theta \quad \ldots$ (iv)
Squaring (iii) and (iv) and adding, we get $\mathrm{x}^{2}+\mathrm{y}^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1$
and $x \sin \theta=y \cos \theta$
Equation (i) may be written as $x \sin \theta \cdot \sin ^{2} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
$\Rightarrow y \cos \theta \sin ^{2} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
$\Rightarrow y \cos \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\sin \theta \cos \theta$
$\Rightarrow y \cos \theta=\sin \theta \cos \theta \therefore y=\sin \theta \quad \ldots$
Putting the value of y from
(iii) in (ii), we get $\mathrm{x} \sin \theta=\sin \theta \cdot \cos \theta \Rightarrow \mathrm{x}=\cos \theta \quad \ldots$ (iv)
Squaring (iii) and (iv) and adding, we get $\mathrm{x}^{2}+\mathrm{y}^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.