Search any question & find its solution
Question:
Answered & Verified by Expert
If \( x=\operatorname{asec}^{2} \theta, y=\operatorname{atan}^{2} \theta \) then \( \frac{d^{2} y}{d x^{2}}= \)
Options:
Solution:
1033 Upvotes
Verified Answer
The correct answer is:
\( 00 \)
\( (D) \)
\( \frac{d x}{d \theta}=2 a \sec ^{2} \theta \tan \theta \)
\( \frac{d y}{d \theta}=2 a \tan \theta \sec ^{2} \theta \)
\( \therefore \frac{d y}{d x}=\frac{d y}{d x}=\frac{2 a \tan \theta \sec ^{2} \theta}{2 a \tan \theta \sec ^{2} \theta}=1 \)
\( \therefore \frac{d^{2} y}{d x^{2}}=0 \)
\( \frac{d x}{d \theta}=2 a \sec ^{2} \theta \tan \theta \)
\( \frac{d y}{d \theta}=2 a \tan \theta \sec ^{2} \theta \)
\( \therefore \frac{d y}{d x}=\frac{d y}{d x}=\frac{2 a \tan \theta \sec ^{2} \theta}{2 a \tan \theta \sec ^{2} \theta}=1 \)
\( \therefore \frac{d^{2} y}{d x^{2}}=0 \)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.