Search any question & find its solution
Question:
Answered & Verified by Expert
If $y=e^x(\log x)$, then $x y_2+(x-1) y=$
Options:
Solution:
2913 Upvotes
Verified Answer
The correct answer is:
$(2 x-1) y_1$
Given, $y=e^x(\log x)$
$$
\frac{d y}{d x}=\frac{e^x}{x}+e^x \ln x
$$
$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=\frac{e^x}{x}+y \Rightarrow x \frac{d^2 y}{d x^2}=x \frac{x \cdot e^x-e^x}{x^2}+\frac{d y}{d x} x \\
& \Rightarrow x \frac{d^2 y}{d x^2}=\frac{x^2 e^x-x e^x}{x^2}+x \frac{d y}{d x} \\
& \Rightarrow x \frac{d^2 y}{d x^2}+(x-1) y=\frac{x e^x\{x-1\}}{x^2}+x \frac{d y}{d x}+(x-1) y \\
& \Rightarrow \frac{x d^2 y}{d x^2}+(x-1) y=\frac{e^x(x-1)}{x}+(x-1) y+x \frac{d y}{d x} \\
& =e^x-\frac{e^x}{x}+(x-1) e^x \ln x+x \frac{d y}{d x} \\
& =(x-1) e^x\left\{\frac{1}{x}+\ln x\right\}+x \frac{d y}{d x} \\
&
\end{aligned}
$$
$$
\begin{aligned}
& \Rightarrow \quad x \frac{d^2 y}{d x^2}+(x-1) y=(x-1) \quad\left[\frac{e^x}{x}+e^x \ln x\right]+x \frac{d y}{d x} \\
& \Rightarrow x \frac{d^2 y}{d x^2}+(x-1) y=(x-1+x) \frac{d y}{d x} \\
& x \frac{d^2 y}{d x^2}+(x-1) y=(2 x-1) \frac{d y}{d x} \\
&
\end{aligned}
$$
[by Eq. (i)]
$$
\frac{d y}{d x}=\frac{e^x}{x}+e^x \ln x
$$
$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=\frac{e^x}{x}+y \Rightarrow x \frac{d^2 y}{d x^2}=x \frac{x \cdot e^x-e^x}{x^2}+\frac{d y}{d x} x \\
& \Rightarrow x \frac{d^2 y}{d x^2}=\frac{x^2 e^x-x e^x}{x^2}+x \frac{d y}{d x} \\
& \Rightarrow x \frac{d^2 y}{d x^2}+(x-1) y=\frac{x e^x\{x-1\}}{x^2}+x \frac{d y}{d x}+(x-1) y \\
& \Rightarrow \frac{x d^2 y}{d x^2}+(x-1) y=\frac{e^x(x-1)}{x}+(x-1) y+x \frac{d y}{d x} \\
& =e^x-\frac{e^x}{x}+(x-1) e^x \ln x+x \frac{d y}{d x} \\
& =(x-1) e^x\left\{\frac{1}{x}+\ln x\right\}+x \frac{d y}{d x} \\
&
\end{aligned}
$$
$$
\begin{aligned}
& \Rightarrow \quad x \frac{d^2 y}{d x^2}+(x-1) y=(x-1) \quad\left[\frac{e^x}{x}+e^x \ln x\right]+x \frac{d y}{d x} \\
& \Rightarrow x \frac{d^2 y}{d x^2}+(x-1) y=(x-1+x) \frac{d y}{d x} \\
& x \frac{d^2 y}{d x^2}+(x-1) y=(2 x-1) \frac{d y}{d x} \\
&
\end{aligned}
$$
[by Eq. (i)]
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.