Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{y}=\sin (\ell \mathrm{nx})$, then which one of the following is correct?
MathematicsDifferential EquationsNDANDA 2018 (Phase 2)
Options:
  • A $\frac{d^{2} y}{d x^{2}}+y=0$
  • B $\frac{d^{2} y}{d x^{2}}=0$
  • C $\mathrm{x}^{2} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}=0$
  • D $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0$
Solution:
1174 Upvotes Verified Answer
The correct answer is: $\mathrm{x}^{2} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}=0$
(c) $y=\sin (\log x)$
$\Rightarrow \frac{d y}{d x}=\frac{\cos (\log x)}{x}$
$\Rightarrow \quad x\left(\frac{d y}{d x}\right)=\cos (\log x)$
Again differentiating, $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=-\frac{\sin \log x}{x}=\frac{-y}{x}$
$\Rightarrow \quad x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.