Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If y=sin(sinx) and y''+f(x)·y'+g(x)·y=0, then f(x)·g(x)=
MathematicsDifferentiationAP EAMCETAP EAMCET 2021 (20 Aug Shift 2)
Options:
  • A 12sin(2x)
  • B 12cos(2x)
  • C sin(2x)
  • D cos(2x)
Solution:
1009 Upvotes Verified Answer
The correct answer is: 12sin(2x)

Since y=sin(sinx) ...i 

Differentiating w.r.t. x by chain rule

y'=cossinx.cosx ...ii

Again differentiate w.r.t. x

y''=-sinsinx×cos2x-sinx×cossinx

y''=-sinsinx×cos2x-sinx×cossinx.cosxcosx

by equation i and ii 

y''=-cos2x.y-tanx.y'

y''+tanx.y'+cos2x.y=0

Since we are given that y''+f(x)·y'+g(x)·y=0

then by comparison fx=tanx, gx=cos2x

Now fx.gx=tanx.cos2x

=sinx.cosx.22

Since 2sinA.cosA=sin2A

=sin2x2.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.