Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), 0 \leq x < \frac{\pi}{2}$, then $\frac{d y}{d x}$ at $x=\frac{\pi}{6}$ is
MathematicsDifferentiationMHT CETMHT CET 2021 (22 Sep Shift 1)
Options:
  • A $\frac{1}{4}$
  • B $\frac{-1}{4}$
  • C $\frac{-3}{2}$
  • D $\frac{1}{2}$
Solution:
1618 Upvotes Verified Answer
The correct answer is: $\frac{1}{2}$
$\begin{aligned} & y=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right) \\ & =\tan ^{-1}\left[\sqrt{\frac{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^2}{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)^2}}\right]=\tan ^{-1}\left[\frac{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^2}{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)^2}\right] \\ & =\tan ^{-1}\left(\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}\right) \\ & =\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}+\tan \frac{x}{2}}{1-\tan \frac{\pi}{4} \cdot \tan \frac{x}{2}}\right) \\ & =\tan ^{-1}\left[\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right]=\frac{\pi}{4}+\frac{x}{2} \\ & \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2} \\ & \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.