Search any question & find its solution
Question:
Answered & Verified by Expert
If $y=\tan ^{-1}\left(\frac{\sqrt{1+a^2 x^2}-1}{a x}\right)$, then $\left(1+a^2 x^2\right){y^{\prime}}^{\prime}+2 a^2 x y^{\prime}$ is equal to
Options:
Solution:
1473 Upvotes
Verified Answer
The correct answer is:
$0$
$$
\text { Given, } y=\tan ^{-1}\left(\frac{\sqrt{1+a^2 x^2}-1}{a x}\right)
$$
Put $a x=\tan \theta$
$$
\begin{aligned}
\therefore \quad y & =\tan ^{-1}\left(\frac{\sqrt{1+\tan ^2 \theta}-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{2 \sin ^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right) \\
& =\tan ^{-1}\left(\tan ^{\frac{\theta}{2}}\right) \\
& =\frac{\theta}{2}=\frac{1}{2} \tan ^{-1} a x \\
\therefore \quad y & =\frac{1}{2} \tan ^{-1} a x
\end{aligned}
$$
On differentiating w.r.t. $x$, we get
$$
y^{\prime}=\frac{1}{2\left(1+a^2 x^2\right)}
$$
Again, differentiating both side we get
$$
\begin{aligned}
y^{\prime \prime} & =-\frac{1}{2} \frac{\left(a^2 2 x\right)}{\left(1+a^2 x^2\right)^2} \\
\Rightarrow\left(1+a^2 x^2\right) y^{\prime \prime} & =-\frac{a^2 x}{1+a^2 x^2} \\
& =-a^2 x\left(2 y^{\prime}\right) \quad[\because \text { from Eq. (i) }] \\
\Rightarrow\left(1+a^2 x^2\right) y^{\prime \prime} & +2 a^2 x y^{\prime}=0
\end{aligned}
$$
\text { Given, } y=\tan ^{-1}\left(\frac{\sqrt{1+a^2 x^2}-1}{a x}\right)
$$
Put $a x=\tan \theta$
$$
\begin{aligned}
\therefore \quad y & =\tan ^{-1}\left(\frac{\sqrt{1+\tan ^2 \theta}-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{2 \sin ^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right) \\
& =\tan ^{-1}\left(\tan ^{\frac{\theta}{2}}\right) \\
& =\frac{\theta}{2}=\frac{1}{2} \tan ^{-1} a x \\
\therefore \quad y & =\frac{1}{2} \tan ^{-1} a x
\end{aligned}
$$
On differentiating w.r.t. $x$, we get
$$
y^{\prime}=\frac{1}{2\left(1+a^2 x^2\right)}
$$
Again, differentiating both side we get
$$
\begin{aligned}
y^{\prime \prime} & =-\frac{1}{2} \frac{\left(a^2 2 x\right)}{\left(1+a^2 x^2\right)^2} \\
\Rightarrow\left(1+a^2 x^2\right) y^{\prime \prime} & =-\frac{a^2 x}{1+a^2 x^2} \\
& =-a^2 x\left(2 y^{\prime}\right) \quad[\because \text { from Eq. (i) }] \\
\Rightarrow\left(1+a^2 x^2\right) y^{\prime \prime} & +2 a^2 x y^{\prime}=0
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.