Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\ldots \infty}}}}$, then $\frac{d y}{d x}$ is equal to
MathematicsQuadratic EquationVITEEEVITEEE 2010
Options:
  • A $\frac{y+x}{y^{2}-2 x}$
  • B $\frac{y^{3}-x}{2 y^{2}-2 x y-1}$
  • C $\frac{y^{3}+x}{2 y^{2}-x}$
  • D None of these
Solution:
2814 Upvotes Verified Answer
The correct answer is: None of these
$\begin{aligned} y &=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\ldots \ldots \infty}}}} \\ \Rightarrow y^{2} &=x+\sqrt{y+\sqrt{x+\sqrt{y+\ldots \ldots \infty}}} \\ \Rightarrow y^{2} &=x+\sqrt{y+y} \Rightarrow y^{2}=x+\sqrt{2 y} \\ \Rightarrow &\left(y^{2}-x\right)^{2}=2 y \end{aligned}$
On differentiating both sides w.r.t. $x$, we get
$$
\begin{array}{l}
2\left(y^{2}-x\right)\left(2 y \frac{d y}{d x}-1\right)=2 \frac{d y}{d x} \\
\Rightarrow 2\left(y^{3}-x y\right) \frac{d y}{d x}-\left(y^{2}-x\right)=\frac{d y}{d x} \\
\Rightarrow\left(2 y^{3}-2 x y-1\right) \frac{d y}{d x}=y^{2}-x \\
\Rightarrow \frac{d y}{d x}=\frac{y^{2}-x}{2 y^{3}-2 x y-1}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.