Search any question & find its solution
Question:
Answered & Verified by Expert
If \( y=\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c\end{array}\right| \), then \( \frac{d y}{d x} \) is equal to
Options:
Solution:
1986 Upvotes
Verified Answer
The correct answer is:
\( \left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right| \)
Given that, \( y=\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c\end{array}\right| \)
So,
\( \frac{d y}{d x}=\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right|+\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ 0 & 0 & 0 \\ a & b & c\end{array}\right|+ \)
\( \left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l & m & n \\ 0 & 0 & 0\end{array}\right| \)
\( =\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right| \)
So,
\( \frac{d y}{d x}=\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right|+\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ 0 & 0 & 0 \\ a & b & c\end{array}\right|+ \)
\( \left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l & m & n \\ 0 & 0 & 0\end{array}\right| \)
\( =\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right| \)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.