Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $z=x+i y, z^{1 / 3}=a-i b$, then $\frac{x}{a}-\frac{y}{b}=k\left(a^{2}-\right.$ $\mathrm{b}^{2}$ ) where $\mathrm{k}$ is equal to
MathematicsComplex NumberVITEEEVITEEE 2019
Options:
  • A 1
  • B 2
  • C 3
  • D 4
Solution:
2454 Upvotes Verified Answer
The correct answer is: 4
$\mathrm{z}^{1 / 3}=\mathrm{a}-\mathrm{ib} \Rightarrow \mathrm{z}=(\mathrm{a}-\mathrm{ib})^{3}$ $\therefore x+i y=a^{3}+i b^{3}-3 i a^{2} b-3 a b^{2}$. Then
$$
\begin{array}{l}
x=a^{3}-3 a b^{2} \Rightarrow \frac{x}{a}=a^{2}-3 b^{2} \\
y=b^{3}-3 a^{2} b \Rightarrow \frac{y}{b}=b^{2}-3 a^{2}
\end{array}
$$
So, $\frac{x}{a}-\frac{y}{b}=4\left(a^{2}-b^{2}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.