Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In $\Delta A B C$, if $a^{2} \cos ^{2} A-b^{2}-c^{2}=0,$ then
MathematicsProperties of TrianglesWBJEEWBJEE 2015
Options:
  • A $\frac{\pi}{4} < A < \frac{\pi}{2}$
  • B $\frac{\pi}{2} < A < \pi$
  • C $A=\frac{\pi}{2}$
  • D $A < \frac{\pi}{4}$
Solution:
2880 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{2} < A < \pi$
We have, $a^{2} \cos ^{2} A-b^{2}-c^{2}=0$
$\Rightarrow \quad a^{2} \cos ^{2} A=b^{2}+c^{2}$
Also in $\triangle A B C$, we have $\begin{aligned} \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} &=\frac{a^{2} \cos ^{2} A-a^{2}}{2 b c} \\=& \frac{-a^{2}\left(1-\cos ^{2} A\right)}{2 b c}=\frac{-a^{2} \sin ^{2} A}{2 b c} < 0 \\ & \quad \because 0 < A < \pi, a, b, c>0 \end{aligned}$
$\Rightarrow \cos A < 0 \Rightarrow A$ lies in IInd quadrant.
$\Rightarrow \quad \frac{\pi}{2} < A < \pi$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.