Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In $\triangle A B C$ if $\angle C=\frac{\pi}{2}$ then
$\tan ^{-1}\left(\frac{a}{b+c}\right)+\tan ^{-1}\left(\frac{b}{c+a}\right)+\tan ^{-1}\left(\frac{c}{a+b}\right)=$
MathematicsInverse Trigonometric FunctionsTS EAMCETTS EAMCET 2020 (14 Sep Shift 1)
Options:
  • A $\tan ^{-1}\left(\frac{r_3}{r}\right)$
  • B $\tan ^{-1}\left(\frac{r_1+r_2}{r_3}\right)$
  • C $\tan ^{-1}\left(\frac{1}{r}\right)$
  • D $\tan ^{-1}\left(\frac{r_1+r_2+r_3}{r}\right)$
Solution:
1718 Upvotes Verified Answer
The correct answer is: $\tan ^{-1}\left(\frac{r_3}{r}\right)$
Given, $\angle C=90^{\circ} \quad \therefore a^2+b^2=c^2$


$\begin{aligned} & \text { Now, } \tan ^{-1}\left(\frac{a}{b+c}\right)+\tan ^{-1}\left(\frac{b}{c+a}\right)+\tan ^{-1}\left(\frac{c}{a+b}\right) \\ & =\tan ^{-1}\left[\frac{\frac{a}{b+c}+\frac{b}{c+a}}{1-\frac{a-b}{(b+c)(c+a)}}\right]+\tan ^{-1}\left(\frac{c}{a+b}\right) \\ & =\tan ^{-1}\left[\frac{a c+a^2+b^2+b c}{b c+c^2+a b+a c-a b}\right]+\tan ^{-1}\left(\frac{c}{a+b}\right) \\ & =\tan ^{-1}\left[\frac{a c+c^2+b^2}{b c+c^2+a c}\right]+\tan ^{-1}\left(\frac{c}{a+b}\right) \\ & =\tan ^{-1}+\tan ^{-1}\left(\frac{c}{a+b}\right)=\tan ^{-1}\left(\frac{1+\frac{c}{a+b}}{1-\frac{c}{a+b}}\right) \\ & =\tan ^{-1}\left(\frac{a+b+c}{a+b-c}\right)=\tan ^{-1} \frac{2 s}{2(s-c)} \\ & =\tan ^{-1}\left(\frac{s}{s-c}\right)=\tan ^{-1}\left(\frac{r_3}{r}\right)\left[r_3=\frac{\Delta}{s-c}, r=\frac{\Delta}{s}\right] \\ & \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.