Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In a triangle $\mathrm{ABC}$ with usual notations, if $\tan \mathrm{A}, \tan \mathrm{B}, \tan \mathrm{C}$ are in H.P., then $a^{2}, b^{2}, c^{2}$
are in
MathematicsProperties of TrianglesMHT CETMHT CET 2020 (14 Oct Shift 2)
Options:
  • A $\boldsymbol{A}_{\mathbf{n}} \mathbf{P}$.
  • B Not in A. P.
  • C $\mathrm{H}. \mathrm{P}$
  • D $\boldsymbol{G}.\mathrm{P}$
Solution:
1656 Upvotes Verified Answer
The correct answer is: $\boldsymbol{A}_{\mathbf{n}} \mathbf{P}$.
If $\tan A, \tan B, \tan C$ are in H.P., then
$$
\frac{2}{\tan B}=\frac{1}{\tan A}+\frac{1}{\tan C} \Rightarrow \frac{2 \cos B}{\sin B}=\frac{\cos A}{\sin A}+\frac{\cos C}{\sin C}
$$
We know that $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\therefore \frac{2\left(\frac{a^{2}+c^{2}-b^{2}}{2 a c}\right)}{b k}=\frac{\frac{b^{2}+c^{2}-a^{2}}{2 b c}}{a k}+\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow \frac{2\left(c^{2}+a^{2}-b^{2}\right)}{2 a b c k}=\frac{b^{2}+c^{2}-a^{2}}{2 a b c k}+\frac{a^{2}+b^{2}-c^{2}}{2 a b c k}$
$2\left(a^{2}+c^{2}-b^{2}\right)=b^{2}+c^{2}-a^{2}+a^{2}+b^{2}-c^{2}$
$2 a^{2}+2 c^{2}-2 b^{2}=2 b^{2} \Rightarrow 4 b^{2}=2 a^{2}+2 c^{2} \Rightarrow 2 b^{2}=a^{2}+c^{2}$
$\Rightarrow a^{2}, b^{2}, c^{2} a r e$ in $A \cdot P .$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.