Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In an equilateral triangle, the inradius, circumradius and one of the exradii are in the ratio
MathematicsProperties of TrianglesVITEEEVITEEE 2011
Options:
  • A $2: 3: 5$
  • B $1: 2: 3$
  • C $1: 3: 7$
  • D $3: 7: 9$
Solution:
1592 Upvotes Verified Answer
The correct answer is: $1: 2: 3$
We have, $\Delta=\frac{\sqrt{3}}{4} a^{2}, s=\frac{3 a}{2}$
Inradius $r=\frac{\Delta}{s}=\frac{a}{2 \sqrt{3}}$
Circumradius $\mathrm{R}=\frac{\mathrm{abc}}{4 \Delta}=\frac{\mathrm{a}^{3}}{\sqrt{3} \mathrm{a}^{2}}=\frac{\mathrm{a}}{\sqrt{3}}$
and exradii $r_{1}=\frac{\Delta}{s-a}=\frac{\sqrt{3} / 4 a^{2}}{a / 2}$
$$
\begin{array}{l}
=\frac{\sqrt{3}}{2} \mathrm{a} \\
\therefore \text { Required ratio }=r: R: r_{1} \\
=\frac{a}{2 \sqrt{3}}: \frac{a}{\sqrt{3}}: \frac{\sqrt{3}}{2} a=1: 2: 3
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.