Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In hydrogen spectrum, the shortest wavelengths of Lyman and Balmer series are $\lambda_1$ and $\lambda_2$ respectively. The Rydberg constant of hydrogen is
PhysicsAtomic PhysicsJEE Main
Options:
  • A $\frac{\lambda_1+\lambda_2}{2}$
  • B $\frac{4\left(\lambda_2-\lambda_1\right)}{3 \lambda_1 \lambda_2}$
  • C $\frac{3\left(\lambda_2-\lambda_1\right)}{4 \lambda_1 \lambda_2}$
  • D $\frac{2\left(\lambda_2-\lambda_1\right)}{3 \lambda_1 \lambda_2}$
Solution:
2267 Upvotes Verified Answer
The correct answer is: $\frac{4\left(\lambda_2-\lambda_1\right)}{3 \lambda_1 \lambda_2}$
For Lymen series
$\begin{aligned} & \frac{1}{\lambda_1}=\mathrm{R}_{\mathrm{H}}\left[\frac{1}{\mathrm{n}_1^2}-\frac{1}{\mathrm{n}_2^2}\right] \\ & \mathrm{n}_1=1 \text { and } \mathrm{n}_2=\infty\end{aligned}$
$\frac{1}{\lambda_1}=\mathrm{R}_{\mathrm{H}}$ ...(1)
For balmer series
$\begin{aligned} & \frac{1}{\lambda_2}=\mathrm{R}_{\mathrm{H}}\left[\frac{1}{\mathrm{n}_1^2}-\frac{1}{\mathrm{n}_2^2}\right] \\ & \mathrm{n}_1=2 \text { and } \mathrm{n}_2=\infty\end{aligned}$
$\frac{1}{\lambda_2}=\frac{\mathrm{R}_{\mathrm{H}}}{4}$ ...(2)
$\begin{aligned} & \frac{1}{\lambda_2}-\frac{1}{\lambda_1}=\frac{\mathrm{R}_{\mathrm{H}}}{4}-\mathrm{R}_{\mathrm{H}} \\ & \frac{\lambda_1-\lambda_2}{\lambda_1 \lambda_2}=\frac{-3 \mathrm{R}_{\mathrm{H}}}{4}\end{aligned}$
Rydberg constant, $\mathrm{R}_{\mathrm{H}}=\frac{4\left(\lambda_2-\lambda_1\right)}{3 \lambda_1 \lambda_2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.