Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
In qualitative analysis, the metals of group I can be separated from other ions by precipitating them as chloride salts. A solution initially contains $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ at a concentration of $0.10 \mathrm{M}$. Aqueous $\mathrm{HCl}$ is added to this solution until the $\mathrm{Cl}^{-}$concentration is $0.10 \mathrm{M}$. What will be the concentration of $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ be at equilibrium? ( $K_{\mathrm{sp}}$ for $\mathrm{AgCl}=1.8 \times 10^{-10}, K_{\mathrm{sp}}$ for $\mathrm{PbCl}_2=1.7 \times 10^{-5}$ )
ChemistryIonic EquilibriumJEE Main
Options:
  • A $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-7} \mathrm{M} ;\left[\mathrm{Pb}^{2+}\right]=1.7 \times 10^{-6} \mathrm{M}$
  • B $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-11} \mathrm{M} ;\left[\mathrm{Pb}^{2+}\right]=8.5 \times 10^{-5} \mathrm{M}$
  • C $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-9} \mathrm{M} ;\left[\mathrm{Pb}^{2+}\right]=1.7 \times 10^{-3} \mathrm{M}$
  • D $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-11} \mathrm{M} ;\left[\mathrm{Pb}^{2+}\right]=8.5 \times 10^{-4} \mathrm{M}$
Solution:
1349 Upvotes Verified Answer
The correct answer is: $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-9} \mathrm{M} ;\left[\mathrm{Pb}^{2+}\right]=1.7 \times 10^{-3} \mathrm{M}$
$K_{\mathrm{sp}}$ for $\mathrm{AgCl}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
$$
\begin{aligned}
\therefore \quad\left[\mathrm{Ag}^{+}\right] & =\frac{1.8 \times 10^{-10}}{10^{-1}} \\
& =1.8 \times 10^{-9} \mathrm{M} . \\
K_{\mathrm{sp}} \text { for } \mathrm{PbCl}_2 & =\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^2 \\
\therefore \quad\left[\mathrm{Pb}^{2+}\right] & =\frac{1.7 \times 10^{-5}}{10^{-1} \times 10^{-1}} \\
& =1.7 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.