Search any question & find its solution
Question:
Answered & Verified by Expert
In the given circuit, the $\mathrm{AC}$ source has $\omega=100 \mathrm{rad} / \mathrm{s}$. Considering the inductor and capacitor to be ideal, the correct choice(s) is (are)

Options:

Solution:
2817 Upvotes
Verified Answer
The correct answers are:
The current through the circuit, $I$ is $0.3 \mathrm{~A}$., The voltage across $100 \Omega$ resistor $=10 \sqrt{2} \mathrm{~V}$
Impedance across $A B, R C$ part of the circuit
$\begin{aligned} \mathrm{Z}_{1}=& \sqrt{X_{c}^{2}+R_{1}^{2}}=\sqrt{\left(\frac{1}{\omega C}\right)^{2}+R_{1}^{2}} \\=& \sqrt{(100)^{2}+(100)^{2}}=100 \sqrt{2} \end{aligned}$
$\therefore \quad I_{1}=\frac{V}{Z_{1}}=\frac{20}{100 \sqrt{2}}$
$\quad\left[\right.$ leads emf by $\left.\phi_{1}\right]$
where $\cos \phi_{1}=\frac{R}{Z_{1}}=\frac{100}{100 \sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow \theta=45^{\circ}$

Impedance across $C D, L R$ part of the circuit.
$\mathrm{Z}_{2}=\sqrt{X_{L}^{2}+R_{2}^{2}}=\sqrt{(\omega L)^{2}+R_{2}^{2}}$
$=\sqrt{(0.5 \times 100)^{2}+(50)^{2}}=50 \sqrt{2} \Omega$
$\therefore \quad I_{2}=\frac{V}{Z_{2}}=\frac{20}{50 \sqrt{2}}$
where $\cos \phi_{2}=\frac{R}{Z_{2}}=\frac{50}{50 \sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow \phi_{2}=45^{\circ}$ $\therefore \quad$ Current $I$ from the circuit
$I=\frac{20}{100 \sqrt{2}}+\frac{20}{50 \sqrt{2}}=\mathrm{I}_{1}+\mathrm{I}_{2} \simeq 0.3 \mathrm{~A}$
$\begin{aligned} \mathrm{Z}_{1}=& \sqrt{X_{c}^{2}+R_{1}^{2}}=\sqrt{\left(\frac{1}{\omega C}\right)^{2}+R_{1}^{2}} \\=& \sqrt{(100)^{2}+(100)^{2}}=100 \sqrt{2} \end{aligned}$
$\therefore \quad I_{1}=\frac{V}{Z_{1}}=\frac{20}{100 \sqrt{2}}$
$\quad\left[\right.$ leads emf by $\left.\phi_{1}\right]$
where $\cos \phi_{1}=\frac{R}{Z_{1}}=\frac{100}{100 \sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow \theta=45^{\circ}$

Impedance across $C D, L R$ part of the circuit.
$\mathrm{Z}_{2}=\sqrt{X_{L}^{2}+R_{2}^{2}}=\sqrt{(\omega L)^{2}+R_{2}^{2}}$
$=\sqrt{(0.5 \times 100)^{2}+(50)^{2}}=50 \sqrt{2} \Omega$
$\therefore \quad I_{2}=\frac{V}{Z_{2}}=\frac{20}{50 \sqrt{2}}$

where $\cos \phi_{2}=\frac{R}{Z_{2}}=\frac{50}{50 \sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow \phi_{2}=45^{\circ}$ $\therefore \quad$ Current $I$ from the circuit
$I=\frac{20}{100 \sqrt{2}}+\frac{20}{50 \sqrt{2}}=\mathrm{I}_{1}+\mathrm{I}_{2} \simeq 0.3 \mathrm{~A}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.