Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Integrate the rational functions
$\frac{x}{(x-1)^2(x+2)}$
MathematicsIntegrals
Solution:
2855 Upvotes Verified Answer
Let $\frac{x}{(x-1)^2(x+2)}=\frac{A}{x-1}+\frac{B}{(x-1)^2}+\frac{C}{x+2}$ $\Rightarrow \quad x \equiv \mathrm{A}(x-1)(x+2)+\mathrm{B}(x+2)+\mathrm{C}(x-1)^2 \quad \ldots(i)$
Put $x=1, x=-2$ in (i), we get: $\mathrm{B}=\frac{1}{3} \& \mathrm{C}=\frac{-2}{9}$
$\begin{aligned}
&\therefore \mathrm{I}=\frac{2}{9} \int \frac{1}{x-1} d x+\frac{1}{3} \int \frac{1}{(x-1)^2} d x-\frac{2}{9} \int \frac{1}{x+2} d x \\
&=\frac{2}{9} \log \left|\frac{x-1}{x+2}\right|-\frac{1}{3(x-1)}+\mathrm{C}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.