Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let A=1,2,3,4,..........10 and B=0,1,2,3,4. The number of elements in the relation R=(a,b)A×A:2a-b2+3a-bB is __________.
MathematicsSets and RelationsJEE MainJEE Main 2023 (06 Apr Shift 1)
Solution:
2956 Upvotes Verified Answer
The correct answer is: 18

Given,

A={1,2,3,,10}  B={0,1,2,4}

(a,b)A×A such that

2a-b2+3a-b-k=0

where k{0,1,2,3,4}

Now finding discriminant D=9-4×2-k

And 9-4×2-k a perfect square for any possible a,b as a-b will be a integer,

So, 9+8k is a perfect square

k=0 or k=2

Now for k=0

2a-b2+3a-b=0

a-b2a-b2+3=0

a-b=0(a,b){(1,1),(2,2).(10,10)}

Total 10 elements belonging to R.

And, a-b=32 is not possible

Now for k=2,

2a-b2+3a-b-2=0

a-b=-2 or a-b=12 (not possible)

Now for a-b=-2 possible pair will be,

(a,b){(1,3),(2,4),.(8,10)}

8 elements belonging to R

Total number of elements will be=18

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.