Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\vec{a}=4 \hat{i}-\hat{j}+\hat{k}, \vec{b}=11 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}$ be a vector such that $(\vec{a}+\vec{b}) \times \vec{c}=\vec{c} \times(-2 \vec{a}+3 \vec{b})$. If $(2 \vec{a}+3 \vec{b}) \cdot \vec{c}=1670$, then $|\vec{c}|^2$ is equal to :
MathematicsVector AlgebraJEE MainJEE Main 2024 (08 Apr Shift 2)
Options:
  • A 1609
  • B 1618
  • C 1600
  • D 1627
Solution:
1257 Upvotes Verified Answer
The correct answer is: 1618
$\begin{aligned} & (\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{c}} \times(-2 \overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{b}})=0 \\ & (\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}+(-2 \overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}=0 \\ & \Rightarrow(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})-2 \overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}=0 \\ & \Rightarrow \overrightarrow{\mathrm{c}}=\lambda(4 \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}) \\ & \Rightarrow=\lambda(44 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}-4 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}) \\ & =\lambda(40 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})\end{aligned}$
Now
$\begin{aligned}
& (8 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}+33 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \cdot \lambda(40 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=1670 \\
& \Rightarrow(41 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}) \cdot(40 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \times \lambda=1670) \\
& \Rightarrow(1640+15+15) \lambda=1670 \Rightarrow \lambda=1 \\
& \text { so } \overrightarrow{\mathrm{c}}=40 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} \\
& \Rightarrow|\overrightarrow{\mathrm{c}}|^2=1600+9+9=1618
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.