Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{m}}$ be a matrix and $\mathrm{C}=\left[\mathrm{c}_{\mathrm{iij}}\right]_{\mathrm{m} \times \mathrm{m}}$ be another matrix where $\mathrm{c}_{\mathrm{ij}}$ is the cofactor of $\mathrm{a}_{\mathrm{ij}}$. Then, what is the value of $|\mathrm{AC}|$?
Options:
Solution:
1337 Upvotes
Verified Answer
The correct answer is:
$|\mathrm{A}|^{\mathrm{m}+1}$
Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{i} j}\right]_{\mathrm{m} \times \mathrm{m}}$ be a matrix and $\mathrm{C}=\left[\mathrm{c}_{\mathrm{i} j}\right]_{\mathrm{m} \times \mathrm{m}}$ be
another matrix where cij is the cofactor of $\mathrm{a}_{\mathrm{ij}}$
$\therefore \quad$ The value of $|\mathrm{AC}|=|\mathrm{A}|^{\mathrm{m}+1}$
another matrix where cij is the cofactor of $\mathrm{a}_{\mathrm{ij}}$
$\therefore \quad$ The value of $|\mathrm{AC}|=|\mathrm{A}|^{\mathrm{m}+1}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.