Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors in the xyz space such that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq 0$ If $A, B, C$ are points with position vectors $\vec{a}, \vec{b}, \vec{c}$ respectively, then the number of possible positions of the centroid of triangle $A B C$ is -
MathematicsVector AlgebraKVPYKVPY 2011 (SB/SX)
Options:
  • A 1
  • B 2
  • C 3
  • D 6
Solution:
2316 Upvotes Verified Answer
The correct answer is: 1
$\begin{array}{lr}\vec{a} \times \vec{b}+\vec{c} \times \vec{b}=0 & \text { similarly } \quad \vec{b}+\vec{c}=\lambda_{2} \vec{a} \\ \vec{a}+\vec{c}=\lambda_{1} \vec{b} & \vec{b}+\vec{a}=\lambda_{3} \vec{c}\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.