Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let \( A B C D \) be a parallelogram such that \( \overrightarrow{A B}=\vec{q}, \overrightarrow{A D}=\vec{p} \) and \( \angle B A D \) be an acute angle. If \( \vec{r} \) is the vector that coincides with the altitude directed from the vertex \( B \) to the side \( A D \), then \( \vec{r} \) is given by
MathematicsVector AlgebraJEE Main
Options:
  • A \( \vec{r}=\vec{q}-\left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p} \)
  • B \( \vec{r}=3 \vec{q}+\frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})} \vec{p} \)
  • C \( \vec{r}=3 \vec{q}-\frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})} \vec{p} \)
  • D \( \vec{r}=-\vec{q}+\left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p} \)
Solution:
1879 Upvotes Verified Answer
The correct answer is: \( \vec{r}=-\vec{q}+\left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p} \)

By Triangle law of Vector addition  

r=BA+AQ
r=-q + λp

 r  is Perpendicular to the vector p

 r·p=0  -q+λp·p=-q·p+λp·p=0

 λ=q·pp·p

  r=-q+q·pp·pp

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.