Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $A B C$ be an isosceles triangle with $B C$ as its base. Then, $r_1=$
MathematicsProperties of TrianglesTS EAMCETTS EAMCET 2018 (04 May Shift 2)
Options:
  • A $a^2$
  • B $\frac{a^2}{2}$
  • C $R^2 \sin ^2 A$
  • D $R^2 \sin ^2 2 B$
Solution:
1187 Upvotes Verified Answer
The correct answer is: $R^2 \sin ^2 A$
We have, $A B C$ be an isosceles triangle, $B C$ as its base.
$$
\therefore \quad \angle B=\angle C
$$


We know that,
$$
r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
$$

$$
\begin{aligned}
r_1 & =4 R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \\
\therefore \quad r_1 & =16 R^2 \sin ^2 \frac{A}{2} \sin \frac{B}{2} \cos \frac{B}{2} \sin \frac{C}{2} \cos \frac{C}{2} \\
& =4 R^2 \sin ^2 \frac{A}{2} \cdot \sin B \sin C \\
& =4 R^2 \sin ^2 \frac{A}{2} \cdot \sin ^2 B \\
& =4 R^2 \sin ^2 \frac{A}{2} \sin ^2\left(\frac{\pi}{2}-\frac{A}{2}\right) \quad[\because \angle B=\angle C] \\
& =4 R^2 \sin ^2 \frac{A}{2} \cos ^2 \frac{A}{2} \\
& =R^2\left(2 \sin \frac{A}{2} \cos \frac{A}{2}\right)^2=R^2 \sin ^2 A
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.