Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\overrightarrow{\mathrm{a}}=\hat{i}+2 \hat{j}+3 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{i}+3 \hat{j}-5 \hat{k}$ and $\overrightarrow{\mathrm{c}}=3 \hat{i}-\hat{j}+\lambda \hat{k}$ be three vectors. Let $\overrightarrow{\mathrm{r}}$ be anit vector along $\vec{b}+\vec{c}$. If $\vec{r} \cdot \vec{a}=3$, then $3 \lambda$ is equal to:
Options:
Solution:
1327 Upvotes
Verified Answer
The correct answer is:
25
$\begin{aligned} & \overrightarrow{\mathrm{r}}=\mathrm{k}(\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}) \\ & \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=3 \\ & \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=\mathrm{k}(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}) \\ & 3=\mathrm{k}(2+6-15+3-2+3 \lambda)\end{aligned}$
$3=\mathrm{k}(-6+3 \lambda)$ ...(1)
$\overrightarrow{\mathrm{r}}=\mathrm{k}(5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-(5-\lambda) \hat{\mathrm{k}})$
$|\vec{r}|=k \sqrt{25+4+25+\lambda^2-10 \lambda}=1$ ...(2)
$\mathrm{k}=\frac{3}{-6+3 \lambda}=\frac{1}{-2+\lambda} \quad$ put in (2)
$\begin{aligned} & 4+\lambda^2-4 \lambda=54+\lambda^2-10 \lambda \\ & 6 \lambda=50 \\ & 3 \lambda=25\end{aligned}$
$3=\mathrm{k}(-6+3 \lambda)$ ...(1)
$\overrightarrow{\mathrm{r}}=\mathrm{k}(5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-(5-\lambda) \hat{\mathrm{k}})$
$|\vec{r}|=k \sqrt{25+4+25+\lambda^2-10 \lambda}=1$ ...(2)
$\mathrm{k}=\frac{3}{-6+3 \lambda}=\frac{1}{-2+\lambda} \quad$ put in (2)
$\begin{aligned} & 4+\lambda^2-4 \lambda=54+\lambda^2-10 \lambda \\ & 6 \lambda=50 \\ & 3 \lambda=25\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.