Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let a=i^+j^+2k^ and b=-i^+2j^+3k^. Then the vector product a+b×a×a-b×b×b is equal to :
MathematicsVector AlgebraJEE Main
Options:
  • A 534i^-5j^+3k^
  • B 734i^-5j^+3k^
  • C 730i^-5j^+7k^
  • D 530i^-5j^+7k^
Solution:
1998 Upvotes Verified Answer
The correct answer is: 734i^-5j^+3k^

a=i^+j^+2k^

b=-i^+2j^+3k^

a+b=3j^+5k^;a·b=-1+2+6=7

Now a×a-b×b×b

=a×a×b-b×b×b

=a×a×b-0×b

=a×a×b×b

=a·ba-a·ab×b

=a·ba×b-a·ab×b

=a·ba×b

Here, a×b=i^j^k^112-123=-i^-5j^+3k^

a·ba×b=7-i^-5j^+3k^

So, a+b×7-i^-5j^+3k^

70i^+3j^+5k^×-i^-5j^+3k^

=7i^j^k^035-1-53

=734i^-5j^+3k^

=734i^-5j^+3k^

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.