Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let f: be a function defined by fx=4x4x+2 and M=faf1axsin4x1xdxN=faf1asin4x1xdx; a12. If αM=βN,α, β, then the least value of α2+β2 is equal to ______
MathematicsDefinite IntegrationJEE MainJEE Main 2024 (31 Jan Shift 1)
Solution:
2410 Upvotes Verified Answer
The correct answer is: 5

Given,

fx=4x4x+2

f1-x=41-x41-x+2

f1-x=44+2·4x=22+4x

fx+f1x=1

Now, solving M=faf1ax·sin4x1xdx

Now, using the formula abfxdx=abfa+b-xdx we get,

M=faf1afa+f1-a-x·sin4fa+f1-a-x1fa+f1-a-xdx

M=faf1a1-x·sin41-xxdx

M=faf1asin41-xxdx-faf1ax·sin41-xxdx

M=NM

2M=N

So, on comparing we get, α=2, β=1

Hence, α2+β2=22+12=5

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.