Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f(x)=\int_{\sin x}^{\cos x} e^{-t^2} d t$. Then $f^{\prime}\left(\frac{\pi}{4}\right)$ equals
MathematicsDefinite IntegrationWBJEEWBJEE 2022
Options:
  • A $\sqrt{1 / e}$
  • B $-\sqrt{2 / e}$
  • C $\sqrt{2 / e}$
  • D $-\sqrt{1 / e}$
Solution:
2269 Upvotes Verified Answer
The correct answer is: $-\sqrt{2 / e}$
$f^{\prime}(x)=-e^{-\cos ^2 x} \sin x-e^{-\sin ^2 x} \cos x$
$\therefore f^{\prime}\left(\frac{\pi}{4}\right)=-e^{-\frac{1}{2}} \frac{1}{\sqrt{2}}-e^{-\frac{1}{2}} \frac{1}{\sqrt{2}}=-\frac{2}{\sqrt{2 e}}=-\sqrt{\frac{2}{e}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.