Search any question & find its solution
Question:
Answered & Verified by Expert
Let $f(x)=\frac{x^2-6 x+5}{x^2-5 x+6}$.

Options:

Solution:
1878 Upvotes
Verified Answer
The correct answer is:
A-p; B-q; C-q; D-p
A-p; B-q; C-q; D-p
$$
f(x)=\frac{(x-1)(x-5)}{(x-2)(x-3)}
$$
The graph of $f(x)$ is shown

(A) If $-1 < x < 1 \Rightarrow 0 < f(x) < 1$
(B) If $1 < x < 2 \Rightarrow f(x) < 0$
(C) If $3 < x < 5 \Rightarrow f(x) < 0$
(D) If $x>5 \Rightarrow 0 < f(x) < 1$
f(x)=\frac{(x-1)(x-5)}{(x-2)(x-3)}
$$
The graph of $f(x)$ is shown

(A) If $-1 < x < 1 \Rightarrow 0 < f(x) < 1$
(B) If $1 < x < 2 \Rightarrow f(x) < 0$
(C) If $3 < x < 5 \Rightarrow f(x) < 0$
(D) If $x>5 \Rightarrow 0 < f(x) < 1$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.