Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathrm{f}(\mathrm{x}) \begin{cases}=\mathrm{x}+\mathrm{a} \sqrt{2} \sin \mathrm{x}, & 0 \leq \mathrm{x} < \frac{\pi}{4} \\ =2 \mathrm{x} \cot \mathrm{x}+\mathrm{b}, & \frac{\pi}{4} \leq \mathrm{x} < \frac{\pi}{2} \\ =\mathrm{a} \cos 2 \mathrm{x}-\mathrm{b} \sin \mathrm{x}, & \frac{\pi}{2} \leq \mathrm{x} \leq \pi\end{cases}$ If $\mathrm{f}(\mathrm{x})$ is continuous for $0 \leq \mathrm{x} \leq \pi$, then
MathematicsContinuity and DifferentiabilityMHT CETMHT CET 2021 (22 Sep Shift 2)
Options:
  • A $a=\frac{\pi}{6}, b=\frac{-\pi}{12}$
  • B $\mathrm{a}=\frac{-\pi}{6}, \mathrm{~b}=\frac{-\pi}{12}$
  • C $a=\frac{-\pi}{6}, b=\frac{\pi}{12}$
  • D $\mathrm{a}=\frac{\pi}{6}, \mathrm{~b}=\frac{\pi}{12}$
Solution:
1297 Upvotes Verified Answer
The correct answer is: $a=\frac{\pi}{6}, b=\frac{-\pi}{12}$
$\lim _{x \rightarrow \frac{\pi^{-}}{4}} f(x)=\lim _{x \rightarrow \frac{\pi^{-}}{4}} x+a \sqrt{2} \sin x$


$\lim _{x \rightarrow \frac{\pi^{+}}{4}} f(x)=\lim _{x \rightarrow \frac{\pi^{+}}{4}} 2 x \cot x+b$

$\lim _{x \rightarrow \frac{\pi^{-}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi^{-}}{2}} 2 x \cot x+b$

$\begin{aligned} & \lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi^{+}}{2}} a \cos 2 x-b \sin x \\ & =a \cos 2\left(\frac{\pi}{2}\right)-b \sin \left(\frac{\pi}{2}\right)\end{aligned}$

Since $f(x)$ is continuous at $\frac{\pi}{4}$ and $\frac{\pi}{2}$, we write
$\frac{\pi}{4}+\mathrm{a}=\frac{\pi}{2}+\mathrm{b} \quad \ldots[$ From (1) and (2) $]$

$\mathrm{b}=-\mathrm{a}-\mathrm{b} \quad \ldots[$ From (3) and (4) $]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.